18,052 research outputs found

    Short-Range Ordered Phase of the Double-Exchange Model in Infinite Dimensions

    Get PDF
    Using dynamical mean-field theory, we have evaluated the magnetic instabilities and T=0 phase diagram of the double-exchange model on a Bethe lattice in infinite dimensions. In addition to ferromagnetic (FM) and antiferromagnetic (AF) phases, we also study a class of disordered phases with magnetic short-range order (SRO). In the weak-coupling limit, a SRO phase has a higher transition temperature than the AF phase for all fillings p below 1 and can even have a higher transition temperature than the FM phase. At T=0 and for small Hund's coupling J_H, a SRO state has lower energy than either the FM or AF phases for 0.26\le p 0 limit but appears for any non-zero value of J_H.Comment: 11 pages, 3 figures, published versio

    Alternative Buffer-Layers for the Growth of SrBi2Ta2O9 on Silicon

    Full text link
    In this work we investigate the influence of the use of YSZ and CeO2/YSZ as insulators for Metal- Ferroelectric-Insulator-Semiconductor (MFIS) structures made with SrBi2Ta2O9 (SBT). We show that by using YSZ only the a-axis oriented Pyrochlore phase could be obtained. On the other hand the use of a CeO2/YSZ double-buffer layer gave a c-axis oriented SBT with no amorphous SiO2 inter- diffusion layer. The characteristics of MFIS diodes were greatly improved by the use of the double buffer. Using the same deposition conditions the memory window could be increased from 0.3 V to 0.9 V. From the piezoelectric response, nano-meter scale ferroelectric domains could be clearly identified in SBT thin films.Comment: 5 pages, 9 figures, 13 refernece

    Biaxial order parameter in the homologous series of orthogonal bent-core smectic liquid crystals

    Get PDF
    The fundamental parameter of the uniaxial liquid crystalline state that governs nearly all of its physical properties is the primary orientational order parameter (S) for the long axes of molecules with respect to the director. The biaxial liquid crystals (LCs) possess biaxial order parameters depending on the phase symmetry of the system. In this paper we show that in the first approximation a biaxial orthogonal smectic phase can be described by two primary order parameters: S for the long axes and C for the ordering of the short axes of molecules. The temperature dependencies of S and C are obtained by the Haller's extrapolation technique through measurements of the optical birefringence and biaxiality on a nontilted polar antiferroelectric (Sm-APA) phase of a homologous series of LCs built from the bent-core achiral molecules. For such a biaxial smectic phase both S and C, particularly the temperature dependency of the latter, are being experimentally determined. Results show that S in the orthogonal smectic phase composed of bent cores is higher than in Sm-A calamatic LCs and C is also significantly large

    Terahertz surface plasmon polariton propagation and focusing on periodically corrugated metal wires

    Get PDF
    In this letter we show how the dispersion relation of surface plasmon polaritons (SPPs) propagating along a perfectly conducting wire can be tailored by corrugating its surface with a periodic array of radial grooves. In this way, highly localized SPPs can be sustained in the terahertz region of the electromagnetic spectrum. Importantly, the propagation characteristics of these spoof SPPs can be controlled by the surface geometry, opening the way to important applications such as energy concentration on cylindrical wires and superfocusing using conical structures.Comment: accepted at PRL, submitted 29th May 200

    Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons

    Get PDF
    Resonance diffraction in the periodic array of graphene micro-ribbons is theoretically studied following a recent experiment [L. Ju et al, Nature Nanotech. 6, 630 (2011)]. Systematic studies over a wide range of parameters are presented. It is shown that a much richer resonant picture would be observable for higher relaxation times of charge carriers: more resonances appear and transmission can be totally suppressed. The comparison with the absorption cross-section of a single ribbon shows that the resonant features of the periodic array are associated with leaky plasmonic modes. The longest-wavelength resonance provides the highest visibility of the transmission dip and has the strongest spectral shift and broadening with respect to the single-ribbon resonance, due to collective effects.Comment: 5 pages, 3 figure

    Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2

    Full text link
    Despite the wealth of experimental data on the Fe-pnictide compounds of the KFe2As2-type, K = Ba, Ca, or Sr, the main theoretical work based on multiorbital tight-binding models has been restricted so far to the study of the related 1111 compounds. This can be ascribed to the more three dimensional electronic structure found by ab initio calculations for the 122 materials, making this system less amenable to model development. In addition, the more complicated Brillouin zone (BZ) of the body-centered tetragonal symmetry does not allow a straightforward unfolding of the electronic band structure into an effective 1Fe/unit cell BZ. Here we present an effective 5-orbital tight-binding fit of the full DFT band structure for BaFeAs including the kz dispersions. We compare the 5-orbital spin fluctuation model to one previously studied for LaOFeAs and calculate the RPA enhanced susceptibility. Using the fluctuation exchange approximation to determine the leading pairing instability, we then examine the differences between a strictly two dimensional model calculation over a single kz cut of the BZ and a completely three dimensional approach. We find pairing states quite similar to the 1111 materials, with generic quasi-isotropic pairing on the hole sheets and nodal states on the electron sheets at kz = 0 which however are gapped as the system is hole doped. On the other hand, a substantial kz dependence of the order parameter remains, with most of the pairing strength deriving from processes near kz = pi. These states exhibit a tendency for an enhanced anisotropy on the hole sheets and a reduced anisotropy on the electron sheets near the top of the BZ.Comment: 12 pages, 15 figure

    Monte Carlo Performance Studies of Candidate Sites for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory with sensitivity in the energy range from 20 GeV to beyond 300 TeV. CTA is proposed to consist of two arrays of 40-100 imaging atmospheric Cherenkov telescopes, with one site located in each of the Northern and Southern Hemispheres. The evaluation process for the candidate sites for CTA is supported by detailed Monte Carlo simulations, which take different attributes like site altitude and geomagnetic field configuration into account. In this contribution we present the comparison of the sensitivity and performance of the different CTA site candidates for the measurement of very-high energy gamma rays.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Second large-scale Monte Carlo study for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) represents the next generation of ground based instruments for Very High Energy gamma-ray astronomy. It is expected to improve on the sensitivity of current instruments by an order of magnitude and provide energy coverage from 20 GeV to more than 200 TeV. In order to achieve these ambitious goals Monte Carlo (MC) simulations play a crucial role, guiding the design of CTA. Here, results of the second large-scale MC production are reported, providing a realistic estimation of feasible array candidates for both Northern and Sourthern Hemisphere sites performance, placing CTA capabilities into the context of the current generation of High Energy Îł\gamma-ray detectors.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    d-wave Superconductivity in the Hubbard Model

    Full text link
    The superconducting instabilities of the doped repulsive 2D Hubbard model are studied in the intermediate to strong coupling regime with help of the Dynamical Cluster Approximation (DCA). To solve the effective cluster problem we employ an extended Non Crossing Approximation (NCA), which allows for a transition to the broken symmetry state. At sufficiently low temperatures we find stable d-wave solutions with off-diagonal long range order. The maximal Tc≈150KT_c\approx 150K occurs for a doping ή≈20\delta\approx 20% and the doping dependence of the transition temperatures agrees well with the generic high-TcT_c phase diagram.Comment: 5 pages, 5 figure
    • 

    corecore